skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hurtado, Sofia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For rapidly spreading diseases where many cases show no symptoms, swift and effective contact tracing is essential. While exposure notification applications provide alerts on potential exposures, a fully automated system is needed to track the infectious transmission routes. To this end, our research leverages large-scale contact networks from real human mobility data to identify the path of transmission. More precisely, we introduce a new Infectious Path Centrality network metric that informs a graph learning edge classifier to identify important transmission events, achieving an F1-score of 94%. Additionally, we explore bidirectional contact tracing, which quarantines individuals both retroactively and proactively, and compare its effectiveness against traditional forward tracing, which only isolates individuals after testing positive. Our results indicate that when only 30% of symptomatic individuals are tested, bidirectional tracing can reduce infectious effective reproduction rate by 71%, thus significantly controlling the outbreak. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. The effectiveness of digital contact tracing during extended outbreaks of airborne infectious diseases, such as COVID-19, influenza, or RSV, can be hindered by limited social compliance and delays in real-world testing. Prior work has shown the utility of graph learning for bidirectional contact tracing and multi-agent reinforcement learning (MARL) for disease mitigation; however, they rely on post-hoc analysis and full testing compliance, thus limiting real-time applicability. To address these limitations, we propose a new framework for online automated bidirectional contact tracing and disease-aware navigation. Our framework iteratively identifies infectious culprits, infers individual health statuses, and deploys agents to minimize infectious exposure without requiring Oracle health information. Our proposed framework achieves an average online backwards tracing F1-score of 92% and estimates the total case counts within 5% accuracy, even under conditions of probabilistic testing with significant social hesitancy. Additionally, our proposed agent-based navigation system can reduce the disease spread by 29%. These results demonstrate the framework’s potential to address critical gaps in traditional disease surveillance and mitigation models and improve real-time public health interventions. 
    more » « less
    Free, publicly-accessible full text available May 5, 2026
  3. Exposure notification applications are designed to help trace disease spreading by alerting exposed individuals to get tested. However, false alarms can cause users to become hesitant to respond, making the applications ineffective. To address the shortcomings of slow manual contact tracing, costly lockdowns, and unreliable exposure notification applications, better disease mitigation strategies are needed. In this paper, we propose a new disease mitigation paradigm where people can reduce infection spreading while maintaining some mobility (i.e., Quarantine in Motion). Our approach utilizes Graph Neural Networks (GNNs) to predict disease hotspots such as restaurants, shops and parks, and Multi-Agent Reinforcement Learning (MARL) to collaboratively manage human mobility to reduce disease transmission. As proof of concept, we simulate an infection using real-world mobility data from New York City (over 200,000 devices) and Austin (over 36,000 devices) and train 10,000 agents from each city to manage disease dynamics. Through simulation, we show that a trained population suppresses their reproduction rate below 1, thereby mitigating the outbreak. 
    more » « less
  4. Exposure notification applications are developed to increase the scale and speed of disease contact tracing. Indeed, by taking advantage of Bluetooth technology, they track the infected population’s mobility and then inform close contacts to get tested. In this paper, we ask whether these applications can extend from reactive to preemptive risk management tools? To this end, we propose a new framework that utilizes graph neural networks (GNN) and real-world Foursquare mobility data to predict high risk locations on an hourly basis. As a proof of concept, we then simulate a risk-informed Foursquare population of over 36,000 people in Austin TX after the peak of an outbreak. We find that even after 50% of the population has been infected with COVID-19, they can still maintain their mobility, while reducing the new infections by 13%. Consequently, these results are a first step towards achieving what we call Quarantine in Motion. 
    more » « less
  5. With the recent advances in human sensing, the push to integrate human mobility tracking with epidemic modeling highlights the lack of groundwork at the mesoscale (e.g., city-level) for both contact tracing and transmission dynamics. Although GPS data has been used to study city-level outbreaks in the past, existing approaches fail to capture the path of infection at the individual level. Consequently, in this paper, we extend epidemics prediction from estimating the size of an outbreak at the population level to estimating the individuals who may likely get infected within a finite period of time. To this end, we propose a network science based method to first build and then prune the dynamic contact networks for recurring interactions; these networks can serve as the backbone topology for mechanistic epidemics modeling. We test our method using Foursquare’s Points of Interest (POI) smart phone geolocation data from over 1.3 million devices to better approximate the COVID-19 infection curves for two major (yet very different) US cities, (i.e., Austin and New York City), while maintaining the granularity of individual transmissions and reducing model uncertainty. Our method provides a foundation for building a disease prediction framework at the mesoscale that can help both policy makers and individuals better understand their estimated state of health and help the pandemic mitigation efforts. 
    more » « less